Character Formulas for Tilting Modules over Kac-moody Algebras

نویسنده

  • WOLFGANG SOERGEL
چکیده

We show how to express the characters of tilting modules in a (possibly parabolic) category O over a Kac-Moody algebra in terms of the characters of simple highest weight modules. This settles, in lots of cases, Conjecture 7.2 of Kazhdan-Lusztig-Polynome and eine Kombinatorik für Kipp-Moduln, Representation Theory (An electronic Journal of the AMS) (1997), by the author, describing the character of tilting modules for quantum groups at roots

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sporadic groups and string theory

whereW is the Weyl group, ρ is the Weyl vector, and the product is over all positive roots α. This is a special case of Weyl’s character formula which says that the character of a finite dimensional representation is equal to a sum similar to the left hand side divided by the product on the right hand side; for the 1-dimensional representation the character is 1 so the sum is equal to the produ...

متن کامل

Charakterformeln Für Kipp-moduln Über Kac-moody-algebren

We show how to express the characters of tilting modules in a (possibly parabolic) category O over a Kac-Moody algebra in terms of the characters of simple highest weight modules. This settles in lots of cases Conjecture 7.2 in Kazhdan-Lusztig-Polynome und eine Kombinatorik für KippModuln, Represent. Theory (1997), by the author, describing the character of tilting modules for quantum groups at...

متن کامل

Integral Intertwining Operators and Complex Powers of Differential (q−Difference) Operators

We study a family of modules over Kac-Moody algebras realized in multi-valued functions on a flag manifold and find integral representations for intertwining operators acting on these modules. These intertwiners are related to some expressions involving complex powers of Lie algebra generators. When applied to affine Lie algebras, these expressions give integral formulas for correlation functio...

متن کامل

Crystal Bases for Quantum Generalized Kac-moody Algebras

In this paper, we develop the crystal basis theory for quantum generalized Kac-Moody algebras. For a quantum generalized Kac-Moody algebra Uq(g), we first introduce the category Oint of Uq(g)-modules and prove its semisimplicity. Next, we define the notion of crystal bases for Uq(g)-modules in the category Oint and for the subalgebra U − q (g). We then prove the tensor product rule and the exis...

متن کامل

Structure and Representation Theory of Infinite-dimensional Lie Algebras

Kac-Moody algebras are a generalization of the finite-dimensional semisimple Lie algebras that have many characteristics similar to the finite-dimensional ones. These possibly infinite-dimensional Lie algebras have found applications everywhere from modular forms to conformal field theory in physics. In this thesis we give two main results of the theory of Kac-Moody algebras. First, we present ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998